
1

info@frozenmountain.com 1-888-379-6686

Live Broadcasting
Delivering ultra-low-latency media at massive
scale with LiveSwitch and WebRTC

Introduction
In the early days of the internet and personal computing, it wasn’t uncommon to wait for a video to
download completely before being able to open and play it. Internet speeds, compression standards, media
quality, and delivery protocols have evolved significantly since then, often competing with each other as
technologists work to deliver content faster, cheaper, and more reliably.

The demand for on-demand content has skyrocketed since then. High-traffic sites like YouTube, Vimeo, and
Netflix stream billions of pre-recorded videos every single day. The technology to support this has evolved
alongside, with HTTP-based streaming technologies in the forefront of the current delivery mechanisms.

More recently, live streaming over the internet has exploded in popularity. A generation of “cord-cutters”
walking away from expensive television subscription services combined with an exponential growth in
internet speeds and new opportunities for interactivity within a live broadcast has driven many live content
producers to distribute online. Social media heavyweights like Facebook and Twitter are pushing hard into
this space, encouraging their users to generate new content and hosting major events like the 2020
presidential debates.

As the drive towards interactivity increases, so does the demand to reduce latency on the generation and
distribution of live content. Traditional techniques using HTTP streaming, which have been adapted for live
broadcast, generally involve latency that exceeds what is reasonable to drive a great user experience in a live
interactive broadcast.

A better approach is to use WebRTC-based streaming with efficient server scalability to drive latency to
sub-second values. With plugin-free support now from every major browser vendor on desktop and mobile
combined with an intelligently designed media server farm, it’s possible to scale to millions of concurrent
users while maintaining just a few milliseconds of latency.

Before going into the details of RTC streaming, it’s useful to understand a bit about HTTP streaming and
how it works.

Anton Venema
Chief Technology Officer

Anton is a leading expert on real-time communications
solutions, and the visionary lead architect behind
LiveSwitch Cloud and LiveSwitch Server.

2

info@frozenmountain.com 1-888-379-6686

HTTP Streaming

HTTP streaming, used by Wowza, Red5Pro, DaCast, IIS Media Services, and others, operates by splitting up a
media recording into lots of “small” (measured in seconds) chunks and transcoding each chunk into a range
of bitrates. Clients can then download these individual chunks over HTTP and select a different bitrate for
each chunk depending on what is available and how well the local network is keeping up.

The primary problem with HTTP
streaming for live broadcasts is
that it introduces several seconds
of latency, often as much as 30
seconds, as chunks are buffered by
the playback device.
Proprietary protocols like Apple’s
HTTP Live Streaming (HLS),
Microsoft’s Smooth Streaming, and
Adobe’s HTTP Dynamic
Streaming (HDS), as well as
international standards like
Dynamic Adaptive Streaming over
HTTP (DASH) all use this same
basic technique, and all suffer from
the same inherent problem.

While this may be acceptable for
pre-recorded or on-demand
content, it is highly disruptive for
live content. The total time before
playback can begin is a
combination of upstream latency,
server processing time,
downstream latency, and this
chunk buffering time.

3

info@frozenmountain.com 1-888-379-6686

Scalability
Scaling an HTTP stream requires a network of content distribution servers to which encoded chunks can be
delivered from a media server responsible for processing the inbound stream. More specifically:

1. Content is recorded, encoded, and uploaded to a media server over an RTP-based connection.
2. The media server decodes the inbound stream and re-encodes it at varying bit-rates in “small” file

chunks.
3. These chunks are distributed out to content distribution servers [1 thru “n”]. The number and

geographic location of these servers can vary, but ideally should be located as closely as possible to
the content subscriber to minimize latency.

4. Clients start downloading these chunks and buffering them for playback. This is where the most latency
is introduced, anywhere from 10-30 seconds.

5. Client-side code analyzes the network traffic determine which bitrate to use for the next downloaded
chunk.

To improve performance, the content distribution servers can and should use in-memory caching to avoid
unnecessary repeated disk I/O. An extra file forwarding tier between the media server and content
distribution servers can be added to increase backend scalability.

4

info@frozenmountain.com 1-888-379-6686

Availability
Making an HTTP stream highly available means uploading the content to at least two different media servers
and ensuring that each content distribution node runs with at least two servers with the same content
available on each. Since everything is HTTP-based, load balancing on the download side is relatively
straight-forward - just add an HTTP load balancer. A highly-available load balancer can ensure that if a
content distribution server goes down, requests are simply routed to another server.

Challenges
As mentioned earlier, the primary challenge with HTTP streaming for live broadcast is the added latency.
Apple’s HLS, for example, uses a default chunk size of 10 seconds. Assuming 3 chunks need to be
downloaded before playback starts, this translates to a minimum 30-second delay on the feed. For live
applications, especially interactive or time-sensitive ones, this extra latency can severely degrade the user
experience.

Reducing the chunk size is possible (as low as 1 second), but buffering at least a few chunks is still required,
generally at least 10 seconds total, and the cost advantages of HLS start to go away as you do this. To
support switching bitrates, each chunk has to be playable independently of any other chunk. This means that
each chunk has to start with a keyframe (a complete image), so reducing chunk size and latency has the side
effect of significantly increasing client bandwidth requirements, and increasing the number of server
requests. Since all bitrates share the same chunk size, this most negatively impacts the higher-quality
streams by requiring client bandwidth to vastly exceed what may be necessary.

5

info@frozenmountain.com 1-888-379-6686

RTC Streaming

For live content broadcasts with low latency, there’s nothing better for the user experience than WebRTC
streaming, the primary delivery mechanism in LiveSwitch. While the client still has to buffer a little bit to
account for network jitter (varying delay), the buffering time is measured in milliseconds, not seconds. The
total time before playback can begin is upload latency plus server processing time plus download latency
plus this jitter buffer duration. Even with less-than-stellar internet connectivity, total latency is generally
sub-second, and often less than 500ms or even 300ms on stable high-speed connections.

6

info@frozenmountain.com 1-888-379-6686

Scalability
Scaling a WebRTC stream requires a network of media servers capable of forwarding individual media
packets from a primary media server that receives and processes the inbound stream. More specifically:

1. Content is recorded, encoded, and uploaded to a media server over a WebRTC-based connection.
2. The media server decodes the inbound stream and re-encodes it at varying profiles in-memory with

varying bit-rates and keyframe intervals.
3. Each encoded frame is forwarded to an array of forwarding media servers [1 thru “n”] . The number and

geographic location of these servers can vary, but ideally should be located as closely as possible to the
content subscriber to minimize latency.

4. Clients open a WebRTC connection to the nearest forwarding media server and receive each frame as
it arrives. This is where RTC streaming blows away the latency of HTTP streaming. Instead of spending
10-30 seconds at this step, we’re only limited by client network latency - about 100 milliseconds.

5. Client and server-side code analyzes the network traffic to determine whether congestion can be
alleviated using forward error correction (FEC), temporal/spatial scalability (SVC), or packet
retransmission (RTX), or whether a lower/higher-profile stream should be consumed.

7

info@frozenmountain.com 1-888-379-6686

Additional tiers of forwarding media servers can be deployed to this tree structure to increase backend
scalability.

If we know how many streams a given server can handle, we can infer how many servers (or tiers of servers)
are needed to support a given client load. For example, assuming each server can deliver a video feed to
1,000 concurrent clients, then a large-scale broadcast setup with 1 upstream server and 1,000 downstream
servers would be able to broadcast to 1,000,000 concurrent clients. We can achieve massive scale (with an
associated cost) by using an array of servers whose sole task is to broadcast data within the internal server
network.

8

info@frozenmountain.com 1-888-379-6686

Availability
Making a WebRTC stream highly available requires at least one additional “upload” media server to provide
redundancy for the inbound stream. The uploader is responsible for sending the content to both servers, or
at minimum reacting quickly to network problems by failing over to the other server. Internally, additional
forwarding media servers are required for redundancy at each tier except the last one, where connection
failures are addressed with simple reconnection/rehydration logic in the client application.

9

info@frozenmountain.com 1-888-379-6686

Challenges
The primary challenge for RTC streaming is its technical complexity. Persistent connections don’t load
balance as easily as stateless HTTP requests, and so failover has to be built into the software itself. This
final tier of servers is responsible for negotiating capabilities with the clients (like forward error correction),
and determining how to get the highest-possible-quality content to the client as reliably as possible, which
means applying codec-specific scalability patterns, estimating FEC effectiveness, and eventually switching
the client to a new stream. Media server software has to be incredibly careful about protecting the upstream
servers from data generated by the downstream servers. Even a tiny bit of information becomes a stampeding
herd in highly concurrent use cases. Failover and migration of sessions from one server to another is especially
important for use cases that scale quickly, predicting the load and adjusting the internal server communication
infrastructure to optimize traffic.

Wrap-Up

Live broadcasts are always better with WebRTC. The user experience is better, new doors are opened for
participant interactivity, and it can be very cost-effective. While some people are still attempting to squeeze
small bits of performance out of HTTP streaming technologies, it makes a whole lot more sense to use a
proven technology with real-time in its name.

If you would like to learn more about how Frozen Mountain‘s LiveSwitch products use WebRTC-based
broadcasting to help you reduce latency in your live broadcasts, don’t hesitate to contact us at
sales@frozenmountain.com.

mailto:sales@frozenmountain.com

